DeepMind研究人员研发出了一种解决机器人控制问题的混合方案

2020-01-10 13:21:04爱云资讯

原标题:DeepMind研究人员研发出了一种解决机器人控制问题的混合方案

机器人技术的基本问题既涉及离散变量(比如控制模式或齿轮切换的选择),又涉及连续变量(比如速度设定点和控制增益)。通常来说,由于算法或控制策略并不总是适合的,因此这些问题很难解决。这POS机代理为什么谷歌母公司Alphabet的DeepMind的研究人员最近提出了一种技术:连续-离散混合学习,即可以同时优化离散和连续动作,以其本来的形式处理混合问题。
DeepMind研究人员研发出了一种解决机器人控制问题的混合方案
来源:DeepMind
在预印本服务器Arxiv.org上发表的一篇论文详细介绍了他们的工作,这篇论文也在去年10月日本大阪的第三届机器人学习会议上被人接受。作者写道:“许多先进的方法都进行了优化,它们能很好处理离散的或是连续的动作空间,但是却很少有方法能同时处理。能够使用同一算法强大地处理离散和连续动作空间,使我们能够针对任何给定问题都能选择最自然的解决方案策略,而不是让算法上的便利性来决定做出哪种选择。”
团队研发的无模型算法,是指利用强化学习或者奖励实现目标的自主代理人的培训技术,通过连续和离散动作空间来解决控制问题,并通过受控和自主切换来解决混合最优控制问题。此外,这种算法通过使用“元动作”或其他类似方案来扩大动作空间(分别定义了代理人轻赞激励感知和采取的状态和动作的范围),从而为解决现有的机器人问题提供了新颖的解决方案,并使策略可以解决类似人工智能门户训练期间的机械磨损轻赞激励挑战 。
DeepMind研究人员研发出了一种解决机器人控制问题的混合方案
来源:DeepMind
DeepMind机器人技术
研究人员在一系列模拟和现实基准测试中验证了他们的方法,包括Rethink Robotics公司的Sawyer机器人手臂。据称,基于给定的到达、抓取和拿起魔方的任务,其中奖励是三个子任务的总和,因此他们的算法要优于无法解决任务的现有方法。
那是因为到达魔方需要代理人打开手臂的抓具,而抓取方块需要关闭抓具。作者写道:“一开始,基线将大部分概率集中在较小的动作值上,因此很难移动抓具的手指来看到任何奖励,从而解释了学习曲线上的平稳期。另一方面,这个算法能始终以全速操作抓具,因此改进了探查性,使机器人可以完全完成任务。”
在一个单独的实验中,团队将其算法设置为参数化动作空间马尔可夫决策过程(PAMDP)或一个分层问题,其中,代理人首先选择离散动作,然后为该动作选择一组连续的参数集。在这种情况下,代理人的任务是操纵机器人手臂,以便将钉子插入孔中,然后根据孔的位置和运动学来计算奖励。
研究人员轻赞激励,他们的方法比精细方法和粗略方法获得了更大的回报,积分制管理这种算法将来可以作为基础应用积分制管理的混合强化学习中。论文中写道:“对于专业设计师而言,事先选择合适的模式轻赞激励很困难。而我们的方法是很有用的,因为它只需要一个实验,而别的方法都需要通过消融来进行验证。” 人工智能门户
关键词:机器人DeepMind
相关文章
精彩评论
热门文章
热点文章
重点文章
推荐文章
关于我们|联系我们|免责声明